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Abstract

While the pace of development of AI has rapidly
progressed in recent years, the implementation
of safe and effective regulatory frameworks has
lagged behind. In particular, the adaptive na-
ture of AI models presents unique challenges
to regulators as updating a model can improve
its performance but also introduce safety risks.
In the US, the Food and Drug Administra-
tion (FDA) has been a forerunner in regulating
and approving hundreds of AI medical devices.
To better understand how AI is updated and
its regulatory considerations, we systematically
analyze the frequency and nature of updates
in FDA-approved AI medical devices. We find
that less than 2% of all devices report having
been updated by being re-trained on new data.
Meanwhile, nearly a quarter of devices report
updates in the form of new functionality and
marketing claims. As an illustrative case study,
we analyze pneumothorax detection models and
find that while model performance can degrade
by as much as 0.18 AUC when evaluated on
new sites, re-training on site-specific data can
mitigate this performance drop, recovering up
to 0.23 AUC. However, we also observed signif-
icant degradation on the original site after re-
training using data from new sites, providing in-
sight from one example that challenges the cur-
rent one-model-fits-all approach to regulatory
approvals. Our analysis provides an in-depth
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look at the current state of FDA-approved AI
device updates and insights for future regula-
tory policies toward model updating and adap-
tive AI.

Data and Code Availability The primary data
used in this study are publicly available through
the FDA website. Our analysis of the data
and code used is publicly available on GitHub:
https://github.com/kevinwu23/AIUpdating.

Institutional Review Board (IRB) Our re-
search does not require IRB approval.

1. Introduction

While the number of AI products developed for com-
mercial applications is rapidly growing, the imple-
mentation of robust regulatory frameworks still lags
behind (Larson et al., 2021; Wirtz et al., 2020; Wu
et al., 2021a). Recently, high-profile accidents involv-
ing Boeing (Wendel, 2019) and Tesla (Corfield et al.,
2023) have been attributed to issues with software
and AI updates in their systems. Applications of AI
to consumer lending (Johnson et al., 2019) and hir-
ing systems (Bogen and Rieke, 2018) has also led to
calls for more flexible regulatory systems that can an-
ticipate algorithmic changes and biases. Such cases
highlight the inherent challenges regulators face due
to the adaptive nature of software and especially AI
products: while model adaptation and updates are
a necessary step in maintaining or improving their

© 2024 K. Wu, E. Wu, K. Rodolfa, D.E. Ho & J. Zou.

https://github.com/kevinwu23/AIUpdating


Regulating AI Adaptation

Figure 1: (Top) Proportion of devices that report model re-training and other update types. The devices
with any updates are a subset of the total AI medical devices, and the devices updated with model
re-training are a subset of devices with any updates. The call-out provides details on the six
devices that received model re-training, along with device name, device description, and details
provided within the FDA approval regarding the type of model re-training applied. (Bottom)
Graph of the number of times devices have been updated. The x-axis refers to the number of
successive updates, and the y-axis refers to the count of devices in each group.

performance, they can also introduce unknown safety
risks (Babic et al., 2019; Gilbert et al., 2021).

In the US, the Food and Drug Administration
(FDA) has been an early mover in AI regulation,
with over 500 approved submissions for AI devices as
of 2022 (Center for Devices and Radiological Health,
2022). The FDA faces unique challenges with regard
to model updating, as adverse events can directly
compromise patient well-being. As such, the FDA
has traditionally not allowed any changes to a model
once it has been approved (Gerke et al., 2020). At the
same time, AI models are well-known to be prone to
distribution shifts, whereby variations in factors such
as medical practice, patient demographics, or disease
prevalence can significantly affect a model’s perfor-
mance (Raghu et al., 2019; Wiens et al., 2019; Wong

et al., 2021). For example, researchers recently found
that Epic’s widely used sepsis prediction model per-
formed much worse than initially reported after be-
ing deployed in a new hospital setting (Wong et al.,
2021). Such cases demonstrate that fixed AI mod-
els that never receive updates can likewise compro-
mise patient safety. Recently, the FDA has taken
action to address the limitations of a fixed-model ap-
proach by providing guidelines for a potential Pre-
determined Change Control Plan (PCCP) (Center
for Devices and Radiological Health, 2023a), as well
as a document describing best practices in machine
learning published jointly by US, Canadian, and UK
health authorities (Center for Devices and Radiolog-
ical Health, 2023c). Under this provision, develop-
ers can make a limited set of changes to their models
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Figure 2: (Top) Time to device update (in years), represented as a box plot where each vertical bar represents
the 25th and 75th percentile, respectively. The red line represents the distribution of time to
update for model re-training, while the blue line refers to time to update of any type. (Bottom)
The estimated rate of updating as a function of device age, which is estimated through the Kaplan-
Meier function in order to account for the right censorship in the dataset. For example, devices at
two years old are updated across all types approximately 20% of the time, whereas the same-age
devices are updated with model re-training around 1.4% of the time. Both plots have been cut-
off at seven years as the longest device update observed is 5.9 years. Shading indicates the 95%
confidence interval around the updating rate at any given time.

without a new submission as long as it is pre-specified
in their initial approval. Such proposed measures by
the FDA underscore the importance of the ongoing
discussion around the appropriate levels of regulation
regarding the adaptive nature of AI.

Despite the importance of model updating in AI
medical devices, little is known about how often such
devices are currently being updated. While AI devel-
opers may individually publish press releases about
changes to their model, there does not exist a sys-
tematic analysis of updating across all AI medical
devices. FDA approvals by the same developer of-
ten contain variants of company and product names,
making it difficult to automatically link devices to-
gether. Furthermore, devices under the same name
often vary widely according to their use cases and are
actually different products. In this study, we aim to
resolve these issues by organizing and grouping FDA-
approved AI medical devices by their updates and

performing an analysis of the frequency and nature
of model updates. Our study explores the extent to
which developers choose to update their devices given
current regulatory, economic, and technological fac-
tors. Additionally, we perform an illustrative case
study on AI models designed to predict pneumotho-
rax, evaluating whether model updates consistently
yield improved performance when re-trained on tar-
get populations.

2. Methods

2.1. Collecting device updates

The primary data for this study consists of FDA ap-
proval documents for AI medical devices, which are
publicly available through the FDA’s online database
(www.fda.gov). Under the FDA’s 510(k) approval
process, developers must demonstrate that the med-

479

www.fda.gov


Regulating AI Adaptation

ical device they are marketing (the “subject” device)
is “substantially equivalent” to a device already avail-
able on the market (the “predicate” device) (Brindza,
1980). Furthermore, each FDA-approved device is
classified using a product code that indicates the
overall function and safety profile (Center for Devices
and Radiological Health, 2023a). For example, the
product code QFM refers to “Radiological Computer-
Assisted Prioritization Software For Lesions” and in-
cludes many common triage-based AI detection soft-
ware. In our analysis, an FDA approval is considered
a device update if 1) the predicate and the subject
devices are from the same manufacturer, 2) both de-
vices share the same product classification code, and
3) both devices are AI devices.
When grouping by manufacturer names, multiple

variants of the same manufacturer often appear (e.g.,
Siemens Medical Solutions USA Inc. and Siemens
Medical Solutions, Inc.). To reconcile these differ-
ences, we first applied approximate string matching
with Levenshtein distance and a similarity threshold
of 0.8 to create candidate company name groupings
before manual review. Furthermore, to systemati-
cally identify the predicate devices for each FDA ap-
proval, we extracted the PDF texts and performed
a search over the first appearance of a submission
number outside of the subject device number before
performing a manual review.

Figure 3: Schematic of database curation steps,
starting from the FDA’s official list of AI
medical device approvals to the final set of
416 unique devices.

Our dataset starts with the FDA’s list of AI/ML
medical devices, which contains a total of 521 FDA
approvals (recent as of 10/5/22). In order to include
more recent updates, we added an additional 46 ap-
provals from 10/5/22-07/01/23 that reference one of

the 521 approvals as a predicate device. In total, our
final dataset contains 416 unique devices, which are
represented across 567 total FDA approvals (e.g. a
single device can be approved multiple times for each
update). The data curation steps and sample sizes
are outlined in Figure 3.

After identifying all device updates, we determined
the types of updates that occur. For each FDA
approval, manufacturers are required to provide de-
tails of the subject device’s technological compari-
son to the predicate device. For example, FDA ap-
proval K221727 (syngo.CT Extended Functionality)
includes a section titled “Comparison of Technologi-
cal Characteristics with the Predicate Device”, which
contains a table comparing and contrasting the pred-
icate (SOMARIS/8 VB60) with the subject device
(SOMARIS/8 VB70). Within this section, the up-
date is described to have “Improved quality of the
bone removal algorithm for the head & neck region”,
and notes that “Segmentation of the bones use a deep
learning algorithm instead of a traditional image pro-
cessing”. We annotated each updated device accord-
ing to the type of update received, which is further
detailed in the Results section.

2.2. Case study

Given that site-specific re-training is not allowed un-
der current FDA 510(k) guidelines, we conducted a
case study on pneumothorax detection models for
chest X-rays to understand the potential performance
gains that are currently uncaptured. There are cur-
rently four FDA-approved medical devices for the
triage of X-ray images for the presence of pneu-
mothorax (Wu et al., 2021a), and there are multi-
ple publicly available chest X-ray datasets that in-
clude pneumothorax as a condition. We used three
datasets, each from a different hospital site in the
USA: the National Institutes of Health Clinical Cen-
ter in Bethesda, Maryland (NIH) (Wang et al., 2017);
Stanford Health Care in Palo Alto, California (SHC)
(Irvin et al., 2019); and Beth Israel Deaconess Med-
ical Center in Boston, Massachusetts (BID) (John-
son et al., 2023). We used a DenseNet-121 deep-
learning architecture (Huang et al., 2017) that has
been demonstrated to be a top-performing model
for the classification of chest conditions (Irvin et al.,
2019; Seyyed-Kalantari et al., 2020). These datasets
represent a diversity of patient populations, imag-
ing manufacturers, and pathology reporting stan-
dards (Wu et al., 2021b). To quantify how the
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Update Example Example FDA
Approval

Example Product Example Change

Model design K201310 Caption Health Simplification of network
architecture via simple
pooling layers and quan-
tization

Input signal K211541 Mammoscreen Added 3D (DBT) mam-
mogram support

Target population K210034 EnsoSleep Pediatric Patient Popu-
lation Included

Training data K221240 BriefCase Larger training dataset
Device User K203508 BriefCase From radiologist only to

medical professionals
Compatibility K191994 ProFound AI Software

V2.1
Added support for
Siemens machines

UI/UX K221240 BriefCase for IHC Triage New desktop application
Hardware K221147 Vivid T8, Vivid T9 Modified transducers
Software K220590 aPROMISE X Accessible through cloud
Device Use Case K193417 FractureDetect (FX) Expanded range of frac-

ture detection from wrist
to ankle, elbow, etc.

Table 1: Examples of updating types present in follow-up devices. The table provides the update type, along
with an example of each subtype.

AI’s performance varies across sites, we trained sep-
arate deep-learning models on data from patients at
each of the three sites and then evaluated the mod-
els on the test set from the other two sites. Each
model takes as input a chest X-ray image and makes
a binary prediction for pneumothorax. Similar to
top-performing model approaches (Irvin et al., 2019;
Seyyed-Kalantari et al., 2020), we trained five iden-
tical models (with different random seeds) for each
setting and then ensembled the predictions by aver-
aging the predicted probabilities across each model.
We then re-trained the model (by fine-tuning) on a
small subset of training data of five thousand exam-
ples from an unseen external site and re-evaluated the
model’s performance on both the original and exter-
nal sites. We perform fine-tuning with the standard
approach of updating all the model weights for a fixed
number of steps without changing the hyperparame-
ters.

3. Results

3.1. Device Update Frequency and Types

Among our dataset of 416 unique devices, we found
that 101 devices report having been updated at least
once (Figure 1). However, the vast majority of these
updates expand the functionality or marketing claims
of the device, essentially constituting a new device
rather than a true model update. Of these 101 de-
vices, only six of the updated devices report retrain-
ing in the model with new data. For each of the
six devices, details on the types of data used in re-
training are limited, with only three providing how
much training data was used. For AI devices, re-
training on new data is central to and distinctive of
the technology, leading to our focus on the novel reg-
ulatory issues here. For example, Syngo.CT CaS-
coring (K221219), which analyzes calcified coronary
lesions, only references that “the algorithm was re-
trained on a larger database”. AI-Rad Companion
(K213096), which analyzes lung CTs, references “ad-
ditional training data was added”, while Briefcase
(K230020), a rib fracture triage device, mentions that
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Train on site A Evaluate on site B (before and after re-training)
SHC (N=39642) BID (N=71238) NIH (N=17417)

SHC 0.851 0.830 → 0.867*** 0.823 → 0.835
BID 0.799 → 0.821*** 0.879 0.782 → 0.850***
NIH 0.727 → 0.809*** 0.645 → 0.883*** 0.848

Train on site A Evaluate on site A (before and after re-training on site B)
SHC (N=39642) BID (N=71238) NIH (N=17417)

SHC 0.853 0.853 → 0.688*** 0.853 → 0.632***
BID 0.878 → 0.717*** 0.878 0.878 → 0.610***
NIH 0.835 → 0.739*** 0.835 → 0.691*** 0.835

Figure 4: A case study on the effect of re-training pneumothorax AI models on other sites reveals that
although re-training improves external site performance, performance consequentially degrades on
the originally trained sites. Top Figure: An AI model is trained on pneumothorax cases from site
A and then evaluated on held-out cases from site A and an external site (site B). Then, the model
is updated by fine-tuning on 5K additional cases from site B and re-evaluated on sites A and B.
This procedure is performed for three clinical sites (SHC, BID, NIH) across six total scenarios.
The results of re-training and re-evaluation are shown in B and C. Middle Table: each cell shows
the AUROC scores of the model evaluated on site B before and after re-training on site B. On
average, models improved by 0.075 AUC after re-training. Bottom Table: each cell shows the
AUROC scores of the model evaluated on site A before and after re-training on site B. Across
both panels, we perform bootstrapped one-sided tests for each cell and indicate with asterisks
(***) where p < 0.001.

the updated device differs “due to training the sub-
ject device on a larger data set”. The remaining three
devices reference the scale of the re-training dataset.
For example, Quantib Prostate (K230772), which an-
alyzes prostate MRIs, reports that the updated algo-
rithm has been trained on “400 scans”, while Genius
AI (K221449), a breast cancer detection device, re-
ports a “two-fold” increase. Finally, Caption Ejec-
tion Fraction (K210747), a cardiac ultrasound AI de-
vice, reports an “additional 30% training data from
three ultrasound devices and two clinical sites”. De-
tails on these devices are also included in Figure 2.
For the other 95 updated devices, we found several
different update subtypes. The most common type
of reported updating occurs when the manufacturer
adds a new or additional prediction task to an exist-

ing model (55 total devices). For example, whereas
FractureDetect’s original device only works on wrists,
its update has expanded to ankles, elbows, and other
body parts. Next, we found that 21 devices have re-
ceived updates to their accepted input signal. For ex-
ample, recent mammography products such as Mam-
moscreen have included the ability to process Digital
Breast Tomosynthesis (DBT)/3D scans, whereas pre-
vious versions only accepted Full-Field Digital Mam-
mography (FFDM)/2D scans. An additional 13 de-
vices report changes to the model design or architec-
ture, such as a change from a fully connected neu-
ral network to a convolutional neural network. Five
devices report a change to the intended target pop-
ulation for the device. For example, EndoSleep ex-
panded its population to pediatric patients, whereas
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the previous device only allowed for patients 18 or
older. We found 22 devices that report changes to
the model but do not specify the exact nature of the
change. For example, approvals may report “addi-
tional algorithmic enhancements” or “improved qual-
ity of algorithms”, but not reference whether the im-
provements come from re-training or model design.
Finally, 37 devices report updates unrelated to the
model or its usage. Namely, these include software
or hardware changes that pertain to its interoper-
ability or output interface. Examples include the
UI/UX of the device which is visible to physicians,
or a hardware configuration that allows the device to
be installed on new machines. We provide a list of
examples of these update types in Table 1.

3.2. Time Between Updates

Based on our dataset, updates of any type occur a
median of 17 months after previous device approval,
with follow-ups as short as 3.5 months and as long
as six years (Figure 2). This is a relatively short
window of time, as the median time from concept to
FDA approval for non-AI medical devices has been
estimated to be 31 months (C. Johnson et al., 2022).
Additionally, in order to account for right-censorship
in our dataset (e.g. not yet observed updates in the
newer devices), we used the Kaplan-Meier estimator
and produced its curve (Figure 2). At two years, de-
vices have an estimated update probability of 20% for
all update types, and at four years, this probability
rises to 30%. After seven years, the estimated proba-
bility of update saturates at 35%, meaning that about
a third of devices receive at least one update of any
kind in their lifetimes. However, the reported rate
of model re-training is significantly lower: within two
years, 1.4% of models are reported to be retrained,
with the probability of device updates saturating at
1.7% after 2.4 years.

3.3. Case Study

We carried out a case study to illustrate and quan-
tify the tradeoffs with AI adaptation through model
retraining. We investigated the potential benefits
and challenges of re-training on additional data from
external sites in pneumothorax AI algorithms (Wu
et al., 2021b,a). We found that external evaluation
of models can result in an AUC decrease of up to 0.18,
while re-training and evaluating on data from exter-
nal sites improves model performance in all scenarios,
with an average of 0.075 and a maximum of 0.23 AUC

(Figure 4, Middle). However, after re-training on ex-
ternal sites, we also found that model performance
degrades an average of 0.176 AUC (and up to 0.268
AUC) when re-evaluated on the original site (Figure
4, Bottom). This suggests that it can be challeng-
ing to have a single AI model that works well across
heterogeneous settings.

4. Discussion

Currently, FDA-approved AI models are “locked”
after approval, whereby making new changes requires
undergoing a brand-new submission process, with
most of the same regulatory burden (Gerke et al.,
2020). Correspondingly, we observe in our analysis
that only six out of 416 devices report actually
received re-training updates, which is an essential
approach for AI adaptation. On the other hand,
nearly a quarter of devices receive updates in the
form of additional marketing or functionality claims.
Such disparity suggests a much stronger economic
incentive for developers to increase the adoption
of their devices through marketing new features
rather than improving the original model through
re-training.

One significant barrier to re-training is devel-
opment costs, which may include acquiring new
datasets (Chen et al., 2019; Wu et al., 2023a),
computational resources (Wiens et al., 2019), data
groundtruthing (Rahimi et al., 2021; Willemink et al.,
2020), and regulatory hurdles (Kelly et al., 2019;
Sertkaya et al., 2022). After models are updated, the
manner in which they are deployed can also affect
a device’s ultimate clinical impact. First, while
previous-generation AI devices for mammography
were clinically evaluated to improve detection rates,
subsequent studies showed limited benefits to women
due to changes in how clinicians interacted with the
devices, as well as the transition from film to digital
mammograms (Lehman et al., 2015; Fenton, 2015).
Second, economic forces such as reimbursement rates
can affect how the frequency and extent to which
these devices are adopted (Parikh and Helmchen,
2022b; Abràmoff et al., 2022). AI adoption is still
in a nascent stage, with very few widely adopted
products and underdeveloped commercial payment
pathways (Chen et al., 2021; Parikh and Helmchen,
2022a; Wu et al., 2023b). In such an environment,
companies with few customers may not be able to
dedicate resources toward regular model updating
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and maintenance. Currently, FDA cleared products
exist in a similar band of risk profiles, with a previous
study showing all devices currently categorized as
risk class II (medium-risk) ((Zhu et al., 2022)).
The lower-risk class I is largely exempt from the
regulatory process, with the higher-risk class III
reserved for devices that “sustain or support life,
are implanted, or present potential unreasonable
risk of illness or injury” ((for Devices and Health)).
Whereas minimal-risk products like mobile health
apps can introduce frequent updates without any
regulatory hurdles, the medium-risk designation
may encourage a trend towards more conservative
updates that are more likely to be cleared rather
than ambitious updates that may be rejected.

The FDA has recognized the high regulatory
hurdles associated with model updating. In a
recently proposed draft guidance from April 2023,
model developers may be allowed to include a PCCP
(Predetermined Change Control Plan) along with
their device submission, which would allow them to
simply document subsequent model updates rather
than requiring a new submission every time (Center
for Devices and Radiological Health, 2023b), poten-
tially alleviating some of the regulatory burden and
shortening update intervals. However, even under
these proposed changes, developers are still required
to complete rigorous evaluation and documentation
of the algorithm changes, which incur much of the
same prohibitive time and costs mentioned above
(Allen, 2022; Evans, 2022). Furthermore, evaluating
an updated model is an inherently difficult task due
to various types of distribution shifts and heteroge-
neous data collection methods that are outside the
control of developers (Schrouff et al., 2022; Chen
et al., 2018). As such, future guidance documents
should consider the challenges inherent in ensuring
and evaluating fairness under fine-tuning and data
shift. Our case study illustrates the tug-and-pull
nature observed in AI models – when trained on
data from a specific site, they can perform well,
but this may trade-off with performance on other
sites. Although our models are trained on only a
few datasets and do not comprehensively represent
the gamut of available training data sources and
model architectures on the market, the results
illustrate how one instantiation with commonly used
data and architecture choices exhibits characteristic
behaviors of performance shift. In the status quo,
model developers are locked into one model, creating

scenarios where they may have to optimize for one
population at the expense of another. To compound
this issue, the actual performance on new, unseen
populations is not even reported since the FDA
does not require postmarket surveillance for 510(k)-
approved devices (Wu et al., 2021a). To alleviate
this problem, future regulatory guidelines should
move beyond a “one-model-fits-all” approach, and
instead consider allowing site-specific re-training and
deployment. By allowing developers to deploy and
validate multiple models under a single device, they
can optimize model performance for each intended
population without incurring performance tradeoffs.
This would ensure that developers verify that their
models perform well on each deployed clinical
site while allowing them to perform the necessary
site-specific documentation and evaluation as they
mature. There are various design decisions that can
affect how an AI model is re-trained: factors like
whether to freeze layers, mix new training data,
hyperparameter tuning, and validation processes can
all influence how much re-training improves model
performance (Pham et al., 2021; Picard, 2021; Qian
et al., 2021). Indeed, in our case study, even though
the individual models used in our ensemble approach
only varied by the random seed used during training,
performance across models still differed by up to
0.056 AUC. In a study by Watson et al. (2022), chest
X-ray deep learning models trained on the same
BIDMC dataset across different random seeds and
hyperparameters were found to disagree in their ex-
planations up to two-thirds of the time. Such studies
on specific datasets represent potential pitfalls of
algorithms applied to a particular clinical domain,
but do not necessarily mean they generalize to all
other types of devices. Regulatory guidelines should
include consideration of appropriate fine-tuning
schemes used when evaluating models.

Furthermore, we find that among models that have
been updated with re-training, details on the data
used in training are very limited, with basic descrip-
tions such as “additional training data”, or “larger
database”. A limitation of our study lies in the lim-
ited details reported in FDA clearances. For example,
while only 6 devices report retraining on new data,
5 devices report updates to their target population
and 21 devices report unspecified improvements to
their algorithm. As such, the true rate of retrain-
ing on new data may be higher than reported. In
order for consumers and users to make informed de-
cisions on the impacts of model updates, regulators
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should ensure that information about the data used
for original model development and updates is trans-
parent and accessible. Information such as patient
demographics, hospital locations, disease subtypes,
and healthcare settings are important covariates that
can significantly influence model performance (Duffy
et al., 2022; Wu et al., 2021b).
As the medical AI field matures, regulation should

progress in lockstep with fully exploiting the technical
benefits of adaptive learning systems while curbing
risks to safety and efficacy. Looking beyond the US,
regulatory bodies, such as the European Union, are
similarly developing guidelines for regulating medi-
cal AI (Muehlematter et al., 2021). We believe that
the trends and challenges in medical AI also extend
to regulating other AI-transformed industries such as
transportation and law, and offer important insights
into how to appropriately foster AI innovation.
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