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Abstract
Clustering can be used in medical imaging re-
search to identify different domains within a
specific dataset, aiding in a better understand-
ing of subgroups or strata that may not have
been annotated. Moreover, in digital pathol-
ogy, clustering can be used to effectively sample
image patches from whole slide images (WSI).
In this work, we conduct a comparative analy-
sis of three deep clustering algorithms – a sim-
ple two-step approach applying K-means onto a
learned feature space, an end-to-end deep clus-
tering method (DEC), and a Graph Convolu-
tional Network (GCN) based method – in ap-
plication to a digital pathology dataset of en-
dometrial biopsy WSIs. For consistency, all
methods use the same Autoencoder (AE) ar-
chitecture backbone that extracts features from
image patches. The GCN-based model, specifi-
cally, stands out as a deep clustering algorithm
that considers spatial contextual information in
predicting clusters. Our study highlights the
computation of graphs for WSIs and emphasizes
the impact of these graphs on the formation of
clusters. The main finding of our research indi-
cates that GCN-based deep clustering demon-
strates heightened spatial awareness compared
to the other methods, resulting in higher cluster
agreement with previous clinical annotations of
WSIs.

Data and Code Availability The implementa-
tion of all considered models is available in the form
of a Python package with detailed documentation at
https://github.com/DIDSR/DomId. All presented
experiments are documented in the same repository.
The WSI dataset is not publicly available at the time
of writing.

Institutional Review Board (IRB) In this
study, de-identified endometrial biopsy slides and
clinical annotations were retrieved from Washing-
ton University School of Medicine in St. Louis
(WUSM) with approval of the Institutional Review
Board (IRB) and under a waiver of HIPAA consent.

1. Introduction

Clustering algorithms have proven to be a valuable
tool in identifying unannotated patterns and group-
ing similar entities within complex underlying distri-
butions. By understanding the previously unrecog-
nized or hidden structures in the data, one can de-
velop further machine learning (ML) or deep learn-
ing (DL) models that are more accurate, reliable,
interpretable, and fair. Researchers have used un-
supervised learning in application to digital pathol-
ogy datasets. The majority of these studies have
predominantly relied on unsupervised learning ap-
proaches to cluster image patches by extracting fea-
tures from the patches and subsequently applying un-
supervised learning algorithms to group the patches
into clusters, e.g., Yao et al. (2020); Lu et al. (2021).
While these methods have yielded promising results,
their drawback is that cluster assignments are pri-
marily predicated on features extracted from indi-
vidual patches, and all patches are treated indepen-
dently, thus neglecting spatial and contextual infor-
mation from neighboring or related patches. Further-
more, it is a common drawback in previous studies to
train the clustering model separately from the fea-
ture extraction model. Dividing the process in such
a manner into two independently performed steps
can result in a feature space that is likely not op-
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timal for the clustering task. As part of this study,
we demonstrate the inferior clustering performance
of such two-step procedures in comparison to end-
to-end deep clustering approaches. The main em-
phasis of this study is, however, on the utilization of
Graph Convolutional Networks (GCN) as an integral
component within our unsupervised deep clustering
algorithm for WSI data. Our objective is to gain
a better understanding of whether contextual infor-
mation about the relationships between WSI patches
contributes substantially to the formation of more ro-
bust and meaningful clusters within digital pathology
data.

Figure 1: Summary of the data label distributions.
Response to hormonal treatment is avail-
able at subject-level. Regions within WSIs
were annotated as CAH, Carcinoma, and
Benign.

2. Related Works

2.1. Unsupervised Learning in Digital
Pathology

Unsupervised learning has been applied to pathol-
ogy data from the granular pixel-level analysis to the
comprehensive examination of whole-slide images. At
the pixel level, unsupervised learning techniques are
employed for tasks of tissue segmentation. For ex-
ample, in the study Landini et al. (2019), a K-means
clustering algorithm was applied at the pixel level
to identify lung cancer areas in human tissue with
the goal of determining the histological cancer sub-
type. Cheng et al. (2018) utilized a deep autoencoder

(AE) to cluster cell patches into different types, and
extracted features were used to characterize distribu-
tions of different types of cells in regions of interest
(ROIs).

Clustering of image patches in digital pathology
is commonly used for patch extraction and/or novel
sampling schemes, which improve over the commonly
used approaches such as random or non-overlap sam-
pling. For example, in Yao et al. (2020), patch-level
K-means clustering is applied to select important
patch clusters, which subsequently are used within
the method for final prediction. In Lu et al. (2021),
an attention-based network is combined with cluster-
ing layers to constrain and refine the feature space
with the overall goal of identifying ROIs and inter-
preting the important morphology used for diagnosis.
Sidulova et al. (2023) proposed a conditional cluster-
ing algorithm for clustering digital pathology patches
with the goal of uncovering hidden subgroups in the
data. The issue of scalability of deep clustering meth-
ods in digital pathology has been highlighted in these
works.

2.2. Graph-based Neural Networks in Digital
Pathology

Exploring spatial relationships within digital
histopathology images has shown to be useful for
investigating microenvironment heterogeneity, which
could potentially have important clinical implica-
tions. Graph neural networks have demonstrated
desirable performance characteristics in digital
pathology applications. As discussed in the paper
by Ahmedt-Aristizabal et al. (2022), graph-based
studies can generally be divided into three main
categories based on the main objective: classifica-
tion (Jaume et al., 2021), segmentation (Anklin
et al., 2021) and ROI retrieval (Ozen et al., 2021).
Depending on the aim of the study, researchers
construct graph representations differently. Among
common graph calculation methods, the Cell-Graph
(CG) (Sureka et al., 2020) and Patch-Graph (PG)
(Ye et al., 2019; Zhao et al., 2020) approaches have
been mainly employed in classification studies; the
Tissue-Graph (TG) (Anklin et al., 2021) has shown
to be successful in enhancing segmentation accuracy.
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Figure 2: Summary of the patch extraction process and graph calculations for the extracted patches.

3. Methods

3.1. Structural Deep Clustering Network
(SDCN), adjusted training process and
batching for WSI data

SDCN (Bo et al., 2020) is a deep neural network
model that combines GCN and AE architectures for
the purpose of unsupervised clustering. However, in
its original formulation, the algorithm exhibits sub-
stantial scalability issues preventing its application
to digital pathology, where WSI sizes are in the gi-
gapixel range or larger. This is primarily due to its
requirement for a graph construction on all available
data and the necessity to process all data in a single
batch during training. In order to circumvent this
issue, we modify the training process of SDCN and
introduce a new batching approach suitable for WSI
data, as described in the following.

In this work, the input to the model is a batch of
patches X and the graph structure G connecting the
patches in the batch. In the presented experiments,
each batch contains 900 patches randomly selected
from the same WSI. The methods for patch extrac-
tion and sampling on this dataset are described in Ka-
haki et al. (2023). In our study, each training batch
contains information about one subject only. Within
each batch, only three regions have been presented,
each containing 300 patches. However, in order to in-
troduce stochasticity enhancing the model’s learning,
new batches are sampled in each epoch of training.
Specifically, for each epoch, we randomly select three
regions from the pool of annotated regions available
for each subject, which exceeds the number used per
batch. As shown in Figure 2, a graph is constructed
for each batch for the GCN layers.

To construct the graph, we connect the patches
based on the patch location coordinates within the

WSI, whereby each patch is connected to the 8
patches closest to it. A constraint imposed by GCN is
that there cannot be any graph connections between
patches from different batches (mini-batches), which
are needed for optimization methods such as stochas-
tic gradient descent or Adam. Therefore, an appro-
priate batching approach has to be specified based on
domain knowledge – different pathology slides consti-
tute different batches in our experiments.

We designed the GCN specifically to leverage spa-
tial relationships between individual patches within
each WSI. Given that patches from different WSIs
are effectively separated by an infinite spatial dis-
tance, each WSI is treated as a distinct batch, isolat-
ing its patches as a complete unit for training. This
approach results in the graph utilized by our SDCN
being a collection of disjoint subgraphs, each repre-
senting a separate WSI and thus treated as an indi-
vidual batch. Our definition of inter-relationship in-
formation, confined to the spatial coordinates within
a single WSI, necessitates this structure.

Thus, we have proposed a modified SDCN algo-
rithm, adapted for the digital pathology domain, and
we refer to it as SDCN + WSI batching.

Each batch of WSI patches is passed through a
convolutional neural network (CNN) based AE. The
encoder of this AE has three convolutional layers with
32, 64, and 128 filters, respectively, followed by a fully
connected layer. The decoder consists of transposed
convolutional layers with 128, 64, and 32 filters. Ad-
ditionally, ReLU activation functions and batch nor-
malization are used within both architectures. Fol-
lowing Bo et al. (2020), the activations Hi of each
AE encoding layer (i = 1, 2, 3) are then passed into
the GCN layers as node features. The GCN consists
of three hidden graph convolutional layers. The com-
bination of the adjacency matrix A from the graph
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G of the batch and the features Hi forms the input
to each hidden layer of the GCN. The node features
from the last hidden layer of the GCN are passed
for cluster assignments Z to an output layer with a
Softmax activation function.
The cluster assignment is achieved by the “dual

self-supervised module” (Bo et al., 2020), which refers
to measuring the similarity qij of the ith sample’s la-
tent representation and the jth cluster’s centroid for
all i, j by using Student’s t-distribution as a kernel,
which is then followed by calculating the target distri-
bution pij for self-supervised training. Q = {qij}i,j
and P = {pij}i,j can be viewed as distributions of
the cluster assignments for all samples, and the KL-
divergence Lclu = KL(P∥Q) is used as the cluster-
ing loss. In order to train the GCN, P is also used
to supervise the GCN output Z via the loss term
Lgcn = KL(P∥Z). The AE is trained with a conven-
tional reconstruction loss Lrec (mean squared error).
Thus, the full objective of SDCN is to minimize

L = Lrec + αLclu + βLgcn.

The primary goal of this study is to evaluate the
potential utility of GCNs in discerning meaningful
clusters within digital pathology datasets. The iden-
tified clusters could subsequently aid in discerning
previously unannotated subgroups or hidden subpop-
ulations in the data. Our hypothesis posits that the
integration of contextual information facilitated by
GCNs may yield discernible patterns or structures
within the dataset that hold substantive biological or
pathological relevance. In terms of practical applica-
tions, we believe that this methodology could serve
as a valuable tool for uncovering latent biases embed-
ded within a given dataset, and thus provide valu-
able information for subsequent training and testing
of clinical DL-based tools (e.g., diagnostic or prog-
nostic models) on the dataset.

3.2. Dataset

In this study, we utilized a set of endometrial biopsy
whole-slide images obtained from patients with com-
plex atypical hyperplasia (CAH) and/or endometri-
oid endometrial adenocarcinoma (EC) fromWashing-
ton University School of Medicine in St. Louis. All
patients in this dataset received progestin for non-
surgical treatment of endometrial disease for between
3 and 15 months, followed by a second biopsy at
which the response to treatment was ascertained by
routine pathology.

Each slide was scanned at 40x using an Aperio
AT2 scanner to obtain a WSI. Subsequently, these
WSIs were reviewed by an expert pathologist and
non-exhaustively annotated to highlight CAH, car-
cinoma, and benign regions. Additionally, a consen-
sus of a second pathologist has been obtained for the
annotations. Moreover, for this study, we have also
extracted patches from some areas outside of the re-
gions of annotation. The patches from the outside
areas were presumed to be benign in our analyses. A
random sample of the outside patches was visually re-
viewed by a pathologist, and it was verified that the
vast majority of them were benign. The data con-
tained clinical information, including age, race, BMI,
and response to hormonal treatment. Thus, every
patch is assigned either a response or non-response
label, depending on the treatment outcomes for the
subject.

Figure 1 presents a summary of the dataset. It en-
compasses data from 65 subjects with one WSI per
subject. Patches of size 256 × 256 pixels were ex-
tracted from 9 to 50 regions per WSI, including re-
gions of annotation and regions outside, as described
above, and coordinates for the exact patch location
within the WSI have been recorded. The total num-
ber of patches that have been used for training is
equal to 175, 500. Detailed information about the la-
bel distribution in the extracted patches can be found
in Figure 1. Because the intended purpose is finding
subgroups in the given dataset only (by an unsuper-
vised method), a separate test set is not used.

3.3. Experimental Setup

In this paper, we compare three clustering algo-
rithms: K-means in a trained deep representation
space of an AE (AE + K-means), Deep Embedding
Clustering (DEC ) (Xie et al., 2016), and the pro-
posed GCN based approach (SDCN + WSI batch-
ing). For consistency and fair comparison, all of
the models use the same pre-trained AE model as
their backbone (see Section 3.1), which is responsi-
ble for extracting feature representations from each
patch. For K-means, the model’s objective is to min-
imize the sum of squared distances between these
features and assigned cluster centroids in the latent
space. DEC (Xie et al., 2016) is a popular deep un-
supervised clustering algorithm that, in an end-to-
end fashion, simultaneously learns feature represen-
tations that are optimized for clustering and cluster
assignments. However, DEC does not take any re-
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Figure 3: Summary of the patch distributions per identified cluster for the compared models. Samples of
patches in each of the identified clusters and per-cluster label distributions are shown.

lationships between data samples into account (i.e.,
patches extracted from WSIs in this work). Finally,
we compare these approaches to the modified SDCN
algorithm, which is detailed in Section 3.1. While K-
means and DEC rely on the direct extraction of fea-
tures from individual patches for cluster formation,
SDCN takes contextual information from neighboring
patches into consideration to make the final cluster
assignment prediction. We chose to identify 6 clus-
ters with each model, as we have 6 combinations of
response labels and annotation labels.

Three evaluation metrics were employed to eval-
uate the resulting cluster assignments: propor-
tion of agreement with the annotation label, de-
noted as pA(region annotation label), proportion of
agreement with the response label, denoted as
pA(response label), and a proposed metric we refer
to as the Contextual Patch Alignment Index (CPAI)
for brevity. CPAI estimates the probability that two
neighboring patches in the graph are assigned to the
same cluster, and it is computed as an empirical pro-
portion of the observations that satisfy that prop-
erty. Proportions of agreement are calculated using
the Hungarian algorithm to determine the assignment
between the identified clusters and the ground truth
labels. Due to visual similarity of the patches within
annotated regions and the biological prior knowledge
about the tissue samples, we hypothesised that as-
signed clusters should also form contiguous regions,
therefore we developed the CPAI metric to measure
the degree to which formed clusters are contiguous.

4. Results

In Figure 3, one can see sample patches for each of
the identified clusters for each model. For a more
quantitative description of the results, we have in-
cluded label distributions for each of the identified
clusters. The top bar graph shows the proportion of
responder and nonresponder samples in each cluster;
the bottom shows the proportion of different anno-
tations – carcinoma, CAH, and benign. It could be
observed that for K-Means, identified clusters do not
have a strong association with either response or an-
notation labels. For the DEC model, clusters 1 and
4 have a greater presence of patches from the sub-
jects who have responded to hormonal treatment in
CAH/EC patients. Clusters 1, 3, and 5 have a larger
presence of Benign samples. For SDCN, clusters 1
and 4 strongly associate with non-responder labels,
and clusters 2 and 4 with CAH labels.

To quantify the degree of association, we measured
percent agreement with region annotation labels and
percent agreement with response labels, which is
shown in Table 1. It could be seen that SDCN has
the highest percent agreement with both annotation
and response labels.

In Figures 4(a) and 4(b), one can see example
cluster masks on an annotated region, and cluster
masks for two randomly chosen WSIs. Evidently,
the SDCN’s contextual understanding is reflected by
a proclivity to assign neighboring image patches to
the same cluster, while the other clustering methods
yield scattered or patchy patterns within areas of the
WSI. This indicates that the domain-specific knowl-
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SDCN DEC k-means
CPAI 0.88 0.47 0.34

pA(region annotation label) 0.60 0.29 0.20
pA(response label) 0.51 0.30 0.20

Table 1: Quantitative assessment of clustering performance per model. Notation: CPAI: Contextual Patch
Assignment Index (see Section 3.3), pA: proportion agreement.

edge encoding relationships between individual image
patches are effectively encapsulated within the GCN-
based model. While in this example, only the spatial
information is integrated into the SDCN through the
graph relationships, other known interrelationships
or associations between locations or areas of a WSI
could be encoded in the same fashion. To investi-
gate the impact of contextual (spatial) information
on cluster assignment, we estimated the probability
of two neighboring patches belonging to the same do-
main, denoted CPAI (see above), and it is reported in
Table 1 alongside other metrics. As anticipated, this
proportion is notably highest for the SDCN model,
showcasing its superior spatial awareness.

5. Conclusions

In this paper, we proposed a GCN-based deep clus-
tering approach for WSI data, utilizing the SDCN
model (Bo et al., 2020) at its core. We compare it
to multiple other DL-based clustering models when
applied to digital pathology data at the patch level.
The results reveal that the DEC and SDCN-based ap-
proaches can identify clusters that track with region
annotations provided by trained pathologists, as well
as treatment response labels. While the two-step ap-
proach of K-means and AE lacks strong correlations,
both end-to-end DL clustering algorithms DEC and
SDCN exhibit varying but pronounced relationships
between specific clusters and response and annotation
labels. Nevertheless, the proposed modified SDCN
demonstrates superior spatial awareness in cluster-
ing neighboring image patches, resulting in an over-
all better clustering performance than DEC, which
demonstrates the role of graph-based deep learning
methods for effective cluster assignments for digital
pathology applications. Thus, the presented experi-
ments and results suggest that incorporation of the
spatial local context to the model could be helpful in
further identification of larger-scale features, such as
carcinoma.

From a practical standpoint, our methodology
holds promise as a tool for detecting and understand-
ing hidden biases or unrecognized subgroups in a
given WSI dataset, thereby offering important infor-
mation for the refinement of clinical deep learning
tools, such as diagnostic and prognostic models, on
that data during their training or testing phases.

While our current methodology primarily lever-
ages spatial data within individual WSIs, integra-
tion of other contextual variables, such as detailed
clinical variables, additional finer-grained pathology
annotations and patient outcomes as well as demo-
graphic information could be explored in future stud-
ies. We also acknowledge that adopting different
types of inter-patch relationship information could al-
ter the graph’s structure, potentially leading to non-
disjoint subgraphs that would challenge our batching
approach. This underscores the importance of incor-
porating both domain knowledge and the specifics of
our methodology when defining batching criteria.
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(a) Example cluster assignment masks on WSI regions.

(b) Example WSIs with cluster prediction masks.

Figure 4: Sample cluster prediction masks for the studied methods overlaid on randomly chosen WSI regions
(as outlined by a pathologist) and on the full WSIs. Each patch within the selected region of the
WSI is categorized into clusters, with each cluster represented by a different color on the map.
(a) The leftmost panels feature two randomly selected regions from two randomly selected WSIs.
Sample regions for subject 082 and subject 119 were annotated by a pathologist as CAH, and
300 patches were extracted from each region at random locations for computational analysis. The
remaining three sets of panels display maps depicting various cluster assignments by the studied
models. (b) Two sample WSIs with cluster assignment masks. Both (a) and (b) demonstrate
SDCN’s capability to effectively encode domain-specific knowledge relating to the individual im-
age patches within a WSI through the use of a graph. In this example, SDCN incorporates spatial
information to yield clustering results that manifest as contiguous regions within the WSI, en-
hancing interpretability and potential biological or clinical relevance. In contrast, alternative deep
clustering methods often result in fragmented or patchy patterns within the WSI, as observed in
both sub-figures (a) and (b).
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