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Abstract
Non-adherence to medication is a complex be-
havioral issue that costs hundreds of billions of
dollars annually in the United States alone. Ex-
isting solutions to improve medication adher-
ence are limited in their effectiveness and re-
quire significant user involvement. To address
this, a minimally invasive mobile health system
called DoseMate is proposed, which can pro-
vide quantifiable adherence data and imposes
minimal user burden. To classify a motion
time-series that defines pill-taking, we adopt
transfer-learning and data augmentation based
techniques that uses captured pill-taking ges-
tures along with other open datasets that repre-
sent negative labels of other wrist motions. The
paper also provides a design methodology that
generalizes to other systems and describes a
first-of-its-kind, in-the-wild, unobtrusively ob-
tained dataset that contains unrestricted pill-
related motion data from a diverse set of users.

Data and Code Availability The dataset and
machine learning code from our primary study is re-
leased at https://gitlab.com/umass-smelt-lab/

dosemate. The existing open datasets used in
our study can be found at their respective repos-
itories; FIC: https://zenodo.org/records/

4421861; IM-WSHA: https://github.com/

SheikhBadaruddinTahir/IM-WSHA; Cafeteria:
http://cecas.clemson.edu/~ahoover/allday/;
Handy: http://www.baskent.edu.tr/~hogul/

handy; Daily Sports, MHEALTH and PAMAP2:
https://archive.ics.uci.edu/datasets.

Institutional Review Board (IRB) The study
that collected the data presented here was approved
by the University of Massachusetts Amherst IRB
(Study #1286) and Providence Health and Services
(Study #SWD5984S-16).

1. Introduction
Many life-saving medications require longitudinal ad-
herence to a prescribed regimen to achieve maximal
efficacy. Yet, achieving high levels of adherence is of-
ten difficult for patients (Marcus et al., 2016). Sub-
optimal adherence to medications was estimated to
cost $100 billion/year in the United States almost
2 decades ago (Osterberg and Blaschke, 2005) and
a more recent estimate suggested annual costs in the
neighborhood of $500 billion (Watanabe et al., 2018).

Improving medication adherence requires new
methods of measuring and enhancing adherence that
are both economically and behaviorally sustainable
over the long term, since the benefits of many medica-
tions (e.g. medications for controlling blood pressure
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Figure 1: DoseMate is an unobtrusive medication ad-
herence system used to quantitatively track pill in-
takes through classification of motion data collected
from a wrist-worn device.

and diabetes, ART and PrEP for HIV) accrue with
consistent levels of adherence that are sustained over
time. Non-adherence is a complex behavioral issue
with many drivers. The evidence for interventions
that improve medication adherence is quite modest,
at least in part due to the complexity of the drivers
of non-adherence (Nieuwlaat et al., 2008; Cross et al.,
2016). For cancer oral agents, a review found limited
evidence that therapeutic educational interventions
improve adherence (Arthurs et al., 2015).

A diverse set of methods for improving adherence
have been proposed that range from simple pen-and-
paper journaling routines to instrumented pill bot-
tles that track opening and closing events, updated
with the most recent time a pill was taken, to in-
gestible sensors powered by stomach acid-activated
batteries, embedded in pills (Spinelli et al., 2020).
While these efforts represent steps towards under-
standing and improving adherence for patients, they
require specialized hardware that may not be cost-
effective for large patient populations. Furthermore,
these systems have no way to longitudinally and au-
tonomously detect pill ingestions, which can lead to
under-reporting. On the other hand, solutions that
require heavy user-involvement have the risk of fur-
ther reducing existing adherence levels. In summary,
there remains a strong need for a light-weight solu-
tion that provides quantifiable adherence data that
maximizes performance and user satisfaction while
minimizing cost.

In this paper, we describe the design, development,
deployment, and evaluation of a mobile health system

called DoseMate, that offers the potential to improve
both measurement and enhancement of adherence
in a generalizable, sustainable, and scalable manner.
The DoseMate system uses a combination of inex-
pensive, flexible, non-invasive technologies to trigger
and measure pill-taking accurately, and in a proof-
of-concept study, is intended to facilitate improved
adherence to HIV-related medications. The Dose-
Mate system provides timely reminders and real-time
feedback to patients and their providers in a manner
that is economically and behaviorally sustainable.

To demonstrate the potential of artificial intelli-
gence for pill ingestion detection, we developed mod-
els trained on data collected using our system. We
analyze a dataset collected with our system that con-
tains over 1000 instances of positively labeled pill in-
gestion events from a clinical population of 20 users.
This data was collected over the span of 6 months in-
the-wild per participant, through an IRB-approved
research study. The key challenge in using this data
is the lack of clear labels that denote specific ges-
tures within a motion time-series that denote actions
that collectively define pill-taking, including bottle
opening, bottle manipulation, pill manipulation, and
hand-to-mouth gestures for pill ingestion and liquid
consumption. Collecting labels for these individual
gestures within the overal time-series would be too
burdensome to collect in the wild from the vulnerable
user population of our study. Furthermore, by design,
our system captures only positively labeled events,
which results in an imbalanced dataset that requires
negative training examples from other potential ac-
tivity classes to train machine learning (ML) models
that detect pill-intake events. To overcome this ob-
stacle, we adopt transfer-learning and data augmen-
tation based techniques that uses other open datasets
that represent other wrist motions that can be simi-
lar to pill intakes (i.e. eating) and other daily living
activities that may be vastly different (i.e. walking,
exercise). Our key contributions are:

• A design methodology for a minimally-invasive
mobile smart calendar system that facilitates the
collection of labeled motion data from medica-
tion intakes with minimal burden imposed on
users. Users need only tap a pill bottle instru-
mented with an NFC tag to initiate data col-
lection from a wrist-worn motion sensor and re-
spond to a confirmation message with one tap.

• A first-of-its-kind, in-the-wild, unobtrusively ob-
tained dataset that contains over 1000 unre-
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stricted pill-related motion examples from a di-
verse set of users. The data is collected from
either the dominant or non-dominant wrist of a
user and contains a subset of different activities
related to pill-taking including hand to mouth
gestures and bottle and pill manipulation. This
dataset differs from prior work in that it was col-
lected in the naturalistic environment of the par-
ticipant with no script or prompt from a study
coordinator and represents pill taking motions
present in a typical day-to-day routine.

• The design and evaluation of feature-based ma-
chine learning (ML) and deep learning models
for pill intake recognition using wrist-worn mo-
tion sensor data from users in their free living
environments. We achieve an average balanced
accuracy 94% and 95% across different permuta-
tions of training datasets for feature-based ML
and deep learning models respectively.

2. Rationale for the DoseMate
System

DoseMate is a data collection system for acquiring
wrist motion data from users to train machine learn-
ing models. DoseMate presents itself to the user as
a smart calendar app that provides a minimally in-
vasive medication logging system; the objective of
the system is to maximize the likelihood that motion
data related to intakes is accurately captured while
remaining immediately useful to the user. Given the
potential negative consequences in giving a patient
incorrect adherence feedback, we have designed our
system around lightweight reminders that should only
improve adherence outcomes while collecting motion
data in the background during pill-taking activities.

2.1. NFC-based logging

Pill bottles are instrumented with Near Field Com-
munication (NFC) tag stickers that interact with a
smartphone-based calendar system. The purpose of
including these tags is to: (1) Ensure that the patient
is taking the correct medication if their regimen in-
cludes multiple medications and (2) Reinforce behav-
ior of patients to bring their medications with them
to the location where they will ultimately be ingested.
After reading the NFC tag, the patient is prompted to
log their intake for the corresponding medication. If
an incorrect or invalid medication is read, the system

warns the patient. In our data collection system, this
tag interaction is also used to initiate data capture.

2.2. Time-based logging

Similar to other medication journaling systems, such
as the one recently implemented as part of the Ap-
ple HealthKit framework1, DoseMate provides time-
based notifications based on the ideal-time for taking
a particular medication. These time-based reminders
are implemented using Android’s alarm API and de-
liver reminders as notifications on a mobile phone
that are mirrored on a wearable. The notifications
prompt the user to take the medication and includes
a button for manually logging the intake if the pa-
tient does not have access to the paired NFC tags.

2.3. Background Data Collection

After being triggered by an NFC tap gesture, Dose-
Mate collects 6-axis motion data (i.e. Gyroscope, Ac-
celerometer) from a smartwatch. This data is meant
to reflect wrist motions related to pill taking activities
including bottle opening, pill transfer from bottle-to-
hand, hand-to-mouth motions, fluid intake, and bot-
tle closing. After collection, the data is transferred
to a backend server for subsequent analysis. Our ul-
timate vision is to use models trained on this data
to continuously monitor user motions in the back-
ground that autonomously reminds a user to log an
intake with no NFC tap used to initiate the process.

3. Related Work

In this section we provide an overview of related tech-
niques used to track pill ingestion events. This re-
search focuses on data science as well as software and
hardware systems developed in the ubiquitous com-
puting and mobile computing research communities.

3.1. Tracking pill ingestion events

The ubiquituous computing and mobile systems re-
search community has explored tracking pill inges-
tion using technology-based solutions. One class of
these solutions focuses on augmenting pills them-
selves to understand whether or not a pill has been in-
gested (Chai et al., 2022b). A recent study focused on

1. https://support.apple.com/en-us/105064
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tracking pill ingestions of PrEP patients using RFID-
enhanced pills (Chai et al., 2022a). While smart pills
offer definitive proof of medication adherence, they do
not scale cost-effectively and would be difficult to sus-
tain for longitudinal adherence. Furthermore, addi-
tional hardware results in additional barriers such as
the reader used for RFID-enhanced pills (Chai et al.,
2022a). In our system, we record motion data sur-
rounding a pill-intake to provide evidence that a pill
was likely taken using a commercial smartwatch that
can be used for all normal smartwatch functions, with
predictions computed by a machine learning classi-
fier. More closely related to our work are systems
that use combinations of motion features, cameras,
and machine learning to estimate pill ingestion (Chen
et al., 2014; Moccia et al., 2022; Wang et al., 2014;
Cheon et al., 2020; Huynh et al., 2009). While these
types of systems are more scalable than smart pill
solutions, we note that previous datasets have been
limited to lab-based data collection efforts that do
not provide a good sense of performance from unre-
stricted and unprompted pill taking behavior in-the-
wild. Instead we opted for a non-invasive (i.e. no
cameras) and minimally disruptive system that uses
a smartphone and smart watch to collect data from
users seamlessly during their day to day activities.

3.2. Activity recognition using features
extracted from motion data

A growing body of work has looked at measuring
hand-to-mouth gestures related to activities with
high impact including eating (Dong et al., 2013),
drinking (Hamatani et al., 2018), brushing (Akther
et al., 2021), smoking (Parate et al., 2014), and other
“bad habits” (Shoaib et al., 2015). These efforts have
been able to exploit periodicity of hand-to-mouth
motions to increase classification performance, where
one-off gestures can be easily filtered since smoking,
drinking, or eating involve a series of similar motions
during a session that defines the activity class. Track-
ing pill-intakes is a substantially different problem
in that a pill-intake is typically a one-shot action.
Instead of looking at repetitions of motion, we look
at the structure of pill-related gestures that contain
several activities that include bottle opening, pill-
manipulation, and hand-to-mouth motions for pill
and fluid intake. We capture diverse data across users
to train generalized classifiers that can identify per-
mutations and variations of pill-related motions.

4. DoseMate: An Unobtrusive Pill
Intake Tracking Platform

DoseMate is a data-driven, mobile smart calendar
system that was developed for phones using An-
droid OS ≥ 9.x and smartwatches running Android
WearOS 2.x. An overview of the system is depicted
in Figure 2. The system was developed, tested, and
deployed over a 5 year period from 2017 - 2022 and
was used to successfully enroll a cohort of 20 users for
an in-the-wild, IRB-approved, clinical study that col-
lected over 1000 examples of positively-labeled medi-
cation intake gestures from unconstrained users dur-
ing their normal routines. In this section, we de-
scribe each system component and how they collec-
tively contribute towards the aim of quantifying med-
ication adherence using machine learning techniques
that correctly classify wrist motions as pill intakes.

BACKEND SYSTEM

COORDINATOR

RESEARCHER CLINICIAN

STUDY PARTICIPANT

Analyses the data

Enrolls participants Adjusts dose schedule 
and contributes data

Assists with 
devices setup

Prescribes
medication

Updates dose 
schedule

Figure 2: DoseMate system overview

4.1. System Life Cycle

The hardware and software used in our system is
designed, and was co-developed with clinicians, to
be relatively simple for a clinician and research co-
ordinator to configure. We use commercial off-the-
shelf (COTS) hardware components wherever possi-
ble with a custom Android 9.x app and a backend
implemented using the Flask web micro framework2.
The system was used to successfully complete a clin-
ical study during the COVID-19 pandemic in North
America with researchers and clinicians on opposite
coasts. We describe this process as a general medi-
cation adherence system and later sections describe
study-specific details.

2. https://flask.palletsprojects.com/
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Two different types of data are collected with Dose-
Mate – the first is data from user interactions with
the smart calendar, while the second is mostly invisi-
ble to the user and is motion data that quantitatively
describes individual pill intakes. We describe these in
further detail. After enrollment, a participant inter-
acts with DoseMate. The visible portion of the app
is a smart calendar with time and interaction based
notifications (Figure 3), with motion data seamlessly
collected in the background.

Interactions with Smart Calendar The home
screen of the application is a smart calendar, graphi-
cally depicting adherence during the current calendar
month where green indicates doses all in the on-time
window, yellow indicates some doses outside of the
on-time window or missing doses, and orange (colors
selected to avoid issues with color blindness) indicates
all doses are missing. We note this synthetic user
would be one struggling with adherence. Study par-
ticipants get a notification on the phone and watch
as depicted in Figures 3 (b). Dose status, along with
potential updates to the dosing schedule, are synchro-
nized with the backend server using a restful API.

Figure 3: DoseMate is implemented as a smart cal-
endar app (a). Study participants interact with the
app through the calendar screen and in response to
notifications on the phone (b) or watch (c).

Wrist-Motion Data Collection Wrist motion
data is collected after tapping a pill bottle with an

NFC tag against the mobile phone – if a dose for this
medication already exists or is outside the early/on-
time/late window, the participant is warned that this
is an extra dose. If inside a valid window with no
recorded dose, this event triggers data collection on
the watch – the watch generates haptic feedback to
indicate it has started recording and 19 seconds later,
the user receives a confirmation depicted in Figures 3
(b) and (c). The assumption is that the user will
have finished pill taking activities during this window;
the window size of 19 seconds was empirically deter-
mined during a round of unprompted lab-based data
collection. These activities can include bottle ma-
nipulation (movement, opening), pill manipulation,
hand-to-mouth gestures (pills and/or fluid intake),
and possibly others. After this time interval elapses,
the user confirms that they did indeed take a pill or
that they did not take a pill. The latter rarely occurs
but is particularly useful when users are first learning
to use the system to avoid mis-labeled data. In prac-
tice, data labeled as not-taken was used as negative
class training data; this data was provided by several
volunteer participants and data during the training
period was discarded.

5. Using Machine Learning to
Recognize Pill Ingestion

Accurately tracking and confirming pill intake events
can be beneficial for users who are at risk of miss-
ing or over-using their medication. While there ex-
ist other tools that are useful in supporting medi-
cation adherence, such as calendar applications and
timer-equipped pill bottles, using smartwatch sensors
provides additional benefits. First, leveraging wrist-
mounted motion sensors can provide a physical con-
firmation signal that the medication has been taken.
Second, that signal can be aligned with medication
intake schedules on smart calendar applications to
limit the number of false positives.

However, accurately detecting pill intake events us-
ing motion sensors presents a number of challenges.
First, the data collected from inertial measurement
units (IMU) in free living conditions is usually noisy,
and it is difficult to reconstruct the actual hand tra-
jectory. Second, there are inter-user variations in
medication intake dynamics which make it challeng-
ing to find consistent common patterns across all
users. Third, there are other hand to mouth ges-
tures, such as eating and drinking, that are similar
to pill intake gestures which can cause false positive
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classifications. In addition to these challenges, the
dataset collected from real users taking medication
is typically small and class-imbalanced because the
vast majority of user-provided labels are for positive
intakes within the context of the smart calendar app.

In order to cope with the above challenges, we ex-
plore the use of two machine learning approaches to
model user gestures while taking medication. We ap-
ply both feature engineering-based machine learning
and more recent deep learning techniques. The task is
modeled as a time-series classification problem. The
input is a multivariate time-series of accelerometer
and gyroscope readings over a ∼ 19 second time in-
terval and the prediction is a binary label indicating
whether the user took the medication or not.

5.1. Dataset Description

Our main dataset (DoseMate) comes from 20 par-
ticipants enrolled in an IRB approved study in
the United States. The data was collected from
the medication-taking participants between January
2020 and June 2022. The main dataset we use in-
cludes 3-axis accelerometer and gyroscope data from
Android watches worn by the participants. During
the scheduled medication intake time interval, the
participants tapped the NFC-equipped pill bottle to a
smartphone to indicate a possible beginning of a med-
ication intake event. Then, the smartphone commu-
nicates with the smartwatch worn by the participant
to start recording motion data. After 19 seconds,
the recording stops and the participant is prompted
to provide a label indicating whether the medication
was taken or not. The data from all participants was
anonymized and aggregated in a backend database.
A total of 1154 medication intake candidate events
were recorded including 185 labeled as non-intakes
(negative labels), each lasting ∼ 19 seconds.

In order to properly evaluate the effectiveness of
medication intake recognition algorithms, we bench-
mark and train our models with existing open
datasets from wrist-worn IMU sensors in addition
to our primary dataset. This is useful because our
primary dataset is very class-imbalanced. While the
open datasets were collected from different environ-
ments using different sensor settings, they still make a
reasonable benchmark because they include a diverse
range of physical activities that one would want to
differentiate from pill intakes for a practical recogni-
tion system. Also, comparing against these different
datasets provides an insight into which type of activi-

ties are easier and which ones are harder to differenti-
ate from pill intakes. We ensure all datasets, includ-
ing our primary dataset, are re-sampled at the same
sampling rate of 15 hertz, segmented into 19-seconds
segments, and go through the same pre-processing
and feature extraction steps. This helps to alleviate
any bias that would come from sensor specificities
rather than the actual motions we want to model.
Table 1 provides a summary of the datasets we used.

5.2. Insights from raw IMU data

To provide insight into the datasets we captured from
users in the wild, we collected a small subset of data
in the lab with video recordings used as ground truth
and labelled different gestures within the intake win-
dow. The purpose of this data collection was to pro-
vide insights and inspiration into what features could
be potentially useful for feature-based machine learn-
ing. We illustrate this data in Figure 4, showing the
most prominent axes of motion. Here, we show the
start and end times of events observed during the
data collection period including bottle openings and
closings, pill to mouth motion, and drinking.

5.3. Feature extraction and feature-based
classification

The input data to our classification pipeline are the
approximately 19 second segments comprising 3-axis
accelerometer time-series and 3-axis gyroscope time-
series resampled at 15 Hz. The output is a binary
label indicating whether the segment contains a pill
intake event or not. Our feature extraction pipeline
is depicted in Figure 5.

Before computing the features used for feature-
based classification, we augment the time-series with
a filtered version of each of the accelerometer time-
series. We apply both a low-pass filter with a cut-off
frequency of 2 Hz and a high-pass filter with a cutoff
frequency of 0.2 Hz. After adding the filtered time-
series, we also compute and add the absolute value
of each time-series axis and the root-mean-square of
the accelerometer and gyroscope 3 axes time-series.

After time-series augmentation, we proceed with
feature computation comprising global features of the
whole segment and statistics of 4 sub-segments of the
whole 19 seconds. Global features include real com-
ponents 1 to 5 of the fast Fourier transform (FFT) of
each time-series and the detrended fluctuation anal-
ysis (DFA) (Bryce and Sprague, 2012) exponent α of
the raw IMU time-series. These global features help
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Dataset # Train # Dev # Test Sampling Min/Max/Avg
rate (Hz) Len (sec)

DoseMate* (This work) 924 / 149 115 / 18 115 / 18 26 18.9 / 19.5 / 19.2
Cafeteria Shen et al. (2016) 3605 451 451 15 14 / 30 / 19.2

Daily sports (left arm) Altun et al. (2010) 1824 228 228 25 19 / 19 / 19
Daily sports (right arm) Altun et al. (2010) 1824 228 228 25 19 / 19 / 19

FIC Kyritsis et al. (2019) 679 85 85 100 19 / 19 / 19
Handy Açıcı et al. (2018) 691 86 86 52 19 / 19 / 19

MHealth Banos et al. (2014) 918 115 115 50 19 / 19 / 19
Pamap2 Reiss and Stricker (2012) 1078 135 135 100 19 / 19 / 19

Wsha Tahir et al. (2020) 173 22 22 24 19 / 19 / 19

Table 1: Number of examples across different datasets used for evaluating our machine learning models. *
The data from DoseMate shows the total number of examples along with the number of negative examples
in each set. Examples from the open datasets are all considered as negative (non-intakes).

Bottle 
opening

Pill to 
mouth

Drinking
water

Bottle
closing

Bottle 
opening

Pill to 
mouth

Drinking
water

Bottle
closing

Figure 4: Two examples of annotated pill intake time-series from two prominent axes of the IMU

capture some of the periodicity and level of fluctu-
ations present in the time-series. Furthermore, we
split the time-series into four sub-segments of equal
lengths and compute statistics of each sub-segment
as features. These splits are motivated by the ob-
servation that most pill intakes included at least four
distinctive intervals corresponding to pill bottle open-
ing, pill ingestion with a hand to mouth gesture, liq-
uid drinking and a final motion which might be a pill

bottle closing or any other concluding motion. For
each of the time-series in each sub-segment, we com-
puted the mean, standard deviation, median, mean-
median difference and the interquartile range (IQR)
as sub-segment features.

In total, 710 features are computed and we per-
form feature ranking based on mutual informa-
tion (Cang and Partridge, 2004). We evaluate
feature-based ensemble classifiers including Random
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Raw data: 19 seconds
6-axis time-series

Filter:
0.2 - 2 HzRMS

Augmented time-series

Abs()

4 sub-segments

Stats: avg, std, median, 
avg-median, IQR

710 features

Split(4)

FFT DFA: α

Figure 5: Feature extraction pipeline.

Forests (Breiman, 2001), Gradient Boosted trees with
XGBoost (Chen and Guestrin, 2016) and balanced
Bootstrap aggregating (Bagging) (Hido et al., 2009).
In addition to the 710 features, we evaluate each clas-
sifier using the top ranked 100, 50, 25, 10 and 5 fea-
tures as a model selection mechanism.

5.4. Using deep learning techniques

We explore the use of deep learning models for time-
series classification as a way to detect pill intakes.
Deep learning techniques are attractive because they
alleviate the need for feature engineering when pro-
cessing unstructured data such as images and se-
quences. Specifically, we use architectures based on
recurrent neural networks (RNN), one-dimensional
convolutional neural networks (CNN) and the trans-
former architecture (Vaswani et al., 2017).

Pre-trained 
Transformer

LSTM

1D CNN

FC yx + +

Figure 6: Deep learning-based architecture for IMU
time-series classification. x is the multi-variate time-
series input data and y is the classification label.

We use an Long short-term memory
(LSTM) (Hochreiter and Schmidhuber, 1997) – fully
convolutional network (LSTM-FCN) (Karim et al.,
2017) as the base architecture for our exploration.
The multivariate time-series data are processed
by both the LSTM and the one-dimensional CNN
(1D-CNN) in parallel. The outputs of the LSTM
and the CNN are then concatenated and passed to
a fully-connected module and a softmax function
for final classification. We also augment the LSTM-
FCN network with a Transformer (Vaswani et al.,
2017) encoder module to allow for transfer learning
through self-supervised learning (SSL) (Ericsson
et al., 2022). Specifically, we follow the denoising
task proposed in Zerveas et al. (2021) to pre-train
our transformer module. The denoising task con-
sists of randomly corrupting the input data by
replacing small sub-segments of the time-series with
zero values, then using the transformer to learn
a function that predicts the original data for the
corrupted sub-segments. Overall, we explore three
architectural choices for the deep learning models:

(a) We process the input time-series x only using an
LSTM-FCN network.

(b) We use a pre-trained transformer module to en-
code the input x before passing it to the LSTM-
FCN network.

(c) We encode the input with the pre-trained trans-
former module and then concatenate the trans-
former output with the original input as a data
augmentation mechanism before passing the re-
sulting time-series to the LSTM-FCN network.

6. Evaluation

6.1. Experimental setup

We evaluate our feature-based classifiers and deep
learning models using two types dataset setups:

1. DoseMate only: we only use data from study
participants, having few negative examples.

2. DoseMate + 1 external dataset: we com-
bine DoseMate data with each external dataset
as negative examples. Each external dataset is
used to evaluate how trained classifiers can dif-
ferentiate between pill taking events from our
primary study and other hand motions recorded
in the external dataset. The external dataset
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is not used for augmenting our primary dataset,
but for evaluation against it.

In each case we report the machine learning perfor-
mance on the test set using specifity, balanced ac-
curacy (BA) which is the arithmetic mean of sensi-
tivity and specificity, and area under the ROC curve
(AUC). Due to the imbalanced class labels, our main
objective is to achieve high balanced accuracy.

We ran the machine learning experiments using
Python 3.9. The feature-based machine learning
pipeline uses scikit-learn and XGBoost packages and
their dependencies. Deep learning experiments are
implemented using PyTorch version 1.3. We ran-
domly split the data into training, development and
test sets in ratios of 80%, 10% and 10% respectively,
and ensured the same ratio of negative examples in
each set. For feature-based models, model hyper-
parameters were tuned on a development set split
with a coarse-grained grid search. For deep learning,
we used common hyper-parameter settings found in
literature. These hyper-parameter settings are pre-
sented in B. We ran each of our experiments for 10
runs and we report the average measures. Our ex-
periments were run on a university computing cluster
using Nvidia RTX 2080 Ti graphic processing units
(GPU). It takes four minutes to run one round of
XGBoost training on all data setups using one GPU,
while it takes seven minutes for the LSTM-FCN net-
work on one GPU. Pre-training the Transformer en-
coder on the de-noising task for a total of 200 epochs
takes four hours. We use the same noise parame-
ters proposed in (Zerveas et al., 2021). For the larger
model of Transformer+LSTM-FCN with input con-
catenation, it takes approximately one hour to train
(i.e. fine-tuning) on all setups (20 epochs per setup).

6.2. Machine learning performance

The best results for the feature-based machine learn-
ing are presented in Table 2 where we use the top
ranked 50 features and XGBoost classifier. All open
datasets combined with DoseMate dataset result in
higher performance than using DoseMate dataset
only. Using time-series from the Cafeteria dataset as
negative examples results in the highest performance,
achieving up to 98% balanced accuracy. This Cafe-
teria dataset may also be easier to distinguish from
pill intakes as participants in that study (Shen et al.,
2016) make many short food intake gestures followed
by longer resting intervals. Considering all datasets,
we achieve 94% balanced accuracy on average.

The best results of the deep learning models are
presented in Table 2. We observe that relative varia-
tions across all data setups are similar to the feature-
base machine learning results. This indicates that
there are inherent patterns in the datasets that make
it possible to distinguish pill intake events from non-
intake examples. However, using the DoseMate only
dataset results in worse performance than XGBoost.
Overall, the deep learning model achieves 95% bal-
anced accuracy, which is comparable to XGBoost.

We present ablation results in Table 3 and Table 4.
There are four options for the Transformer+LSTM-
FCN model: whether to concatenate the transformer
output with the input or not, and whether to fine-
tune the transformer weights or not. Using transfer
learning with fine-tuning achieves better results for
deep learning models. On average, using deep learn-
ing with transfer learning achieves better results than
feature-based classifiers.

6.3. Feature importance analysis

With feature-based machine learning, we are able
to analyze the importance of different features to
the classification task. In our experiments, the XG-
Boost library provides a feature importance assess-
ment based on how many times each feature gets
split on by the decision tree estimators. Based on the
nine evaluation setups presented in Table 2, we av-
eraged the importance scores computed by XGBoost
for each feature in each setup and then ranked them.
We present the top 10 features in Figure 7.

Figure 7: Top 10 features ranked used by XGBoost.
The feature importance score indicates the average
number of decision tree splits on each feature.
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Table 2: Feature-based machine learning versus deep learning results. For the feature-based setup, we report
results from XGBoost model and top ranked 50 features. The deep learning model uses the architecture
in Figure 6 where the input is passed to the pre-trained Transformer without input concatenation and no
fine-tuning of the Transformer. (SP: Specificity, BA: Balanced accuracy, AUC: Area under the ROC curve).
The DoseMate dataset includes only data from study participants. Instances of open datasets are used as
negative examples (no intakes) in addition to those in the DoseMate dataset. Bold results indicate the best
metric between XGBoost and the deep learning model for a given setup(row-wise comparison for each metric)

XGBoost Deep learning
Dataset setup SP BA AUC SP BA AUC
DoseMate only .83 .90 .93 .83 .88 .92
DoseMate+ Cafeteria Shen et al. (2016) .98 .98 1.0 .99 .98 1.0
DoseMate+ Daily sports (left arm) Altun et al. (2010) .96 .96 .99 .95 .95 .99
DoseMate+ Daily sports (right arm) Altun et al. (2010) .95 .96 .99 .98 .96 .99
DoseMate+ FIC Kyritsis et al. (2019) .90 .95 .98 .97 .96 .98
DoseMate+ Handy Açıcı et al. (2018) .91 .94 .98 .96 .95 .98
DoseMate+ MHealth Banos et al. (2014) .90 .94 .99 .97 .97 .99
DoseMate+ Pamap2 Reiss and Stricker (2012) .91 .94 .99 .98 .97 .99
DoseMate+ IM-WSHA Tahir et al. (2020) .90 .93 .96 .92 .92 .96
Average .92 .94 .98 .95 .95 .98

Table 3: Comparison of average scores of different
feature-based classifiers. SP: Specificity, BA: Bal-
anced accuracy, AUC: Area under the ROC curve

Model SP BA AUC
XGBoost .92 .94 .98
Random Forest (RF) .88 .93 .97
Balanced RF .89 .93 .97
Balanced Bagging .90 .94 .97

Table 4: Comparing average scores of different deep
learning model setups. We have options to concate-
nate (CC) the transformer output with the input or
not, and to fine-tune (FT) the transformer or not.
The best results in bold. SP: Specificity, BA: Bal-
anced accuracy, AUC: Area under the ROC curve

Model FT CC SP BA AUC
Trfm. + LSTM-FCN Yes No .95 .95 .98
Trfm. + LSTM-FCN Yes Yes .95 .95 .98
Trfm. + LSTM-FCN No Yes .94 .94 .98
Trfm. + LSTM-FCN No No .93 .92 .98
LSTM-FCN n/a n/a .94 .94 .98

By observing the top 10 features presented in Fig-
ure 7, we make the following observations:

1. 7 out of the 10 top features relate to statistics on
the first quarter/segment of the time-series. This
generally may correspond to pill bottle opening
and pill-to-mouth gestures. Therefore, it is not

surprising that this segment contains the most
distinctive features as opposed to other arbitrary
gestures observable from the wrist-worn IMU.

2. The top two features are about the average of Z-
axis accelerations. This might correspond to the
lifting gesture, which may also correspond to the
hand to mouth gesture.

3. Some of the top features also correspond to the
RMS signal of the first quarter/segment which
indicates distinctive energy of the time-series
during that interval.

4. There are also features corresponding to the
detrended fluctuation analysis (DFA) exponent
(α), which indicates distinctive statistical self-
affinity of the signals. This feature typi-
cally measures the roughness (fluctuations) or
smoothness of the time-series.

7. Discussion

This manuscript has described a first-of-its-kind sys-
tem that unobtrusively collects pill-taking gestures
from study participants in the wild. Our system rep-
resents a first step towards low cost, scalable, quan-
titative adherence measurement, but there are many
open challenges to be explored in this domain. We
highlight some of these in this section.
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Explainability. While the use of deep learning for
activity recognition does not lend itself to easy expla-
nation from the human, it is based on known princi-
ples that work well in practice such as universal func-
tion approximation and regularization. This makes it
possible for models to generalize to unseen data sam-
ples in practice, as shown in 6.2. However, the lack of
easy explainability is not limited to neural networks.
Even feature-based machine learning algorithms such
as random forest are not fully explainable. While we
are able to rank various features used and intuitively
confirm their effectiveness, the machinery of combin-
ing many features in a random forest model with hun-
dreds of estimators is not also fully explainable.

Previous studies involving wrist-worn motion sen-
sors such as (Parate et al., 2014) attempt to recon-
struct motion trajectories. This can allow easy vi-
sualization of the 3-dimensional motion, enable the
use of displacement and rotation features and convey
some level of explainability. However, this is most
practical for simple and constrained motions such as
short hand-to-mouth gestures (e.g. smoking detec-
tion in Parate et al. (2014)) and often requires 9-axis
IMUs with motion processing units that output mo-
tion data as quarternions. The aggregate tracking
error for a 6-axis IMUs on commodity smartwatches
and the fact that pill intake events span more than 12
seconds involving multiple and diverse gestures make
it less practical in our case (Shen et al., 2018).

Online Classifier Performance: In this work, we
performed a post-facto analysis of classifiers trained
on data collected during a study. A future implemen-
tation of an adherence system would deploy the clas-
sifier on a mobile phone or smartwatch and continu-
ously record motion data in the background. Rather
than requiring an NFC tap or other prompt to ini-
tiate data collection, this approach would classify
any motion segment as an intake or non-intake and
prompt the user to record it. Running the classifier
continuously will potentially trigger false-positive in-
take logging prompts. It remains unknown whether
these would be infrequent enough to remain un-
bothersome to users while avoiding more dangerous
false-negatives. Ideally, a classifier could be made ac-
curate enough to autonomously identify intakes with
no user intervention while contextual optimizations
can limit when classifications occur (i.e. during valid
scheduled intake windws); however, significant work
remains to achieve the needed accuracy and confi-
dence in the classifiers to realize this vision. Further-

more, additional steps would be needed to optimize
the power attributed to data capture and inference.

Limitations of using external datasets: While
we relied on external IMU datasets to alleviate the
problem of class imbalance in our primary, using ex-
ternal datasets collected from various sensors and en-
vironments brings different problems. First, there is a
potential distributional shift caused by sensor hetero-
geneity since various sensors have different amount
and types of noise associated with them. Second,
sensor heterogeneity means that we have to resam-
ple the time-series to the lowest sampling rate among
the datasets, causing further interpolation noise. Fi-
nally, while the datasets we used were all collected
from wrist-mounted IMUs, there were also a large di-
versity in terms of activities performed by the users
while wearing the IMUs. Therefore, all the above
factors impact the performance observed when we
consider these external datasets as negative exam-
ples. A viable approach to mitigate this limitation
in future studies would be to only consider datasets
from the same type of IMU as the one used in the
primary study. One way to do this would be to ei-
ther collect additional data in the background from
the same primary study subjects or consider using a
more widely used common wearable such as Android
or Apple watches for which open IMU datasets exist.

8. Conclusion

In this paper we described the design, implementa-
tion, and evaluation of a mobile health system used
to quantitatively assess and encourage medication
adherence through accurate classification of pill in-
takes. To address the lack of clear labels that de-
note specific gestures within a motion time-series
that define pill-taking, we adopted transfer-learning
and data augmentation based techniques that used
other open datasets that represented negative labels
of other wrist motions. Our results show feature-
based machine learning achieved an average F1 score
of 96.8%, while deep-learning models achieved an
average F1 score of 96.2% across different training
datasets that contain different combinations of simi-
lar and disparate datasets.
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Comparative study on classifying human activities
with miniature inertial and magnetic sensors. Pat-
tern Recognition, 43(10):3605–3620, 2010.

Gilly Arthurs, Janice Simpson, Andrea Brown,
Ohnma Kyaw, Sharon Shyrier, and Catherine M
Concert. The effectiveness of therapeutic pa-
tient education on adherence to oral anti-cancer
medicines in adult cancer patients in ambulatory
care settings: a systematic review. JBI Evidence
Synthesis, 13(5):244–292, 2015.

Oresti Banos, Rafael Garcia, Juan A Holgado-
Terriza, Miguel Damas, Hector Pomares, Ignacio
Rojas, Alejandro Saez, and Claudia Villalonga.
mhealthdroid: a novel framework for agile devel-
opment of mobile health applications. In Ambi-
ent Assisted Living and Daily Activities: 6th Inter-
national Work-Conference, IWAAL 2014, Belfast,
UK, December 2-5, 2014. Proceedings 6, pages 91–
98. Springer, 2014.

Leo Breiman. Random forests. Machine learning, 45:
5–32, 2001.

RM Bryce and KB Sprague. Revisiting detrended
fluctuation analysis. Scientific reports, 2(1):315,
2012.

Shuang Cang and Derek Partridge. Feature rank-
ing and best feature subset using mutual informa-
tion. Neural Computing & Applications, 13:175–
184, 2004.

Peter R Chai, Yassir Mohamed, Maria J Busta-
mante, Georgia R Goodman, Jesse Najarro, Jose
Castillo-Mancilla, Alejandro Baez, Olivia Bronzi,
Matthew C Sullivan, Luis M Pereira, et al.

Digiprep: a pilot trial to evaluate the feasibility,
acceptability, and accuracy of a digital pill sys-
tem to measure prep adherence in men who have
sex with men who use substances. Journal of Ac-
quired Immune Deficiency Syndromes (1999), 89
(2):e5, 2022a.

Peter R Chai, Clint Vaz, Georgia R Goodman, Han-
nah Albrechta, Henwei Huang, Rochelle K Rosen,
Edward W Boyer, Kenneth H Mayer, and Conall
O’Cleirigh. Ingestible electronic sensors to mea-
sure instantaneous medication adherence: A narra-
tive review. Digital Health, 8:20552076221083119,
2022b.

Chen Chen, Nasser Kehtarnavaz, and Roozbeh Ja-
fari. A medication adherence monitoring system
for pill bottles based on a wearable inertial sen-
sor. In 2014 36th Annual International Conference
of the IEEE Engineering in Medicine and Biology
Society, pages 4983–4986. IEEE, 2014.

Tianqi Chen and Carlos Guestrin. Xgboost: A
scalable tree boosting system. In Proceedings of
the 22nd acm sigkdd international conference on
knowledge discovery and data mining, pages 785–
794, 2016.

Andy Cheon, Stephanie Yeoju Jung, Collin Prather,
Matthew Sarmiento, Kevin Wong, and Diane
Myung-kyung Woodbridge. A machine learning
approach to detecting low medication state with
wearable technologies. In 2020 42nd Annual Inter-
national Conference of the IEEE Engineering in
Medicine & Biology Society (EMBC), pages 4252–
4255. IEEE, 2020.

Amanda J Cross, Rohan A. Elliott, Kate Petrie,
Lisha Kuruvilla, and Johnson George. Interven-
tions for improving medication-taking ability and
adherence in older adults prescribed multiple med-
ications. The Cochrane database of systematic
reviews, 5:CD012419, 2016. URL https://api.

semanticscholar.org/CorpusID:218555810.

Yujie Dong, Jenna Scisco, Mike Wilson, Eric Muth,
and Adam Hoover. Detecting periods of eating
during free-living by tracking wrist motion. IEEE
journal of biomedical and health informatics, 18(4):
1253–1260, 2013.

Linus Ericsson, Henry Gouk, Chen Change Loy, and
Timothy M Hospedales. Self-supervised represen-
tation learning: Introduction, advances, and chal-

577

https://doi.org/10.1145/3463494
https://doi.org/10.1145/3463494
https://api.semanticscholar.org/CorpusID:218555810
https://api.semanticscholar.org/CorpusID:218555810


DoseMate: A Real-world Evaluation of Machine Learning Classification of Pill Taking

lenges. IEEE Signal Processing Magazine, 39(3):
42–62, 2022.

Takashi Hamatani, Moustafa Elhamshary, Akira
Uchiyama, and Teruo Higashino. Fluidmeter:
Gauging the human daily fluid intake using smart-
watches. Proc. ACM Interact. Mob. Wearable
Ubiquitous Technol., 2(3), sep 2018. doi: 10.
1145/3264923. URL https://doi.org/10.1145/

3264923.

Shohei Hido, Hisashi Kashima, and Yutaka Taka-
hashi. Roughly balanced bagging for imbalanced
data. Statistical Analysis and Data Mining: The
ASA Data Science Journal, 2(5-6):412–426, 2009.

Sepp Hochreiter and Jürgen Schmidhuber. Long
short-term memory. Neural computation, 9(8):
1735–1780, 1997.

H Hung Huynh, Jean Meunier, Jean Sequeira, and
Marc Daniel. Real time detection, tracking and
recognition of medication intake. International
Journal of Computer and Information Engineer-
ing, 3(12):2801–2808, 2009.

Fazle Karim, Somshubra Majumdar, Houshang
Darabi, and Shun Chen. Lstm fully convolutional
networks for time series classification. IEEE access,
6:1662–1669, 2017.

Konstantinos Kyritsis, Christos Diou, and Anasta-
sios Delopoulos. Modeling wrist micromovements
to measure in-meal eating behavior from inertial
sensor data. IEEE journal of biomedical and health
informatics, 2019.

Julia L Marcus, Leo B Hurley, Charles Bradley
Hare, Dong Phuong Nguyen, Tony Phengrasamy,
Michael J Silverberg, Juliet E Stoltey, and
Jonathan E Volk. Preexposure prophylaxis for hiv
prevention in a large integrated health care sys-
tem: adherence, renal safety, and discontinuation.
Journal of acquired immune deficiency syndromes
(1999), 73(5):540, 2016.

Sara Moccia, Sarah Solbiati, Mahshad Khornegah,
Federica FS Bossi, and Enrico G Caiani. Auto-
mated classification of hand gestures using a wrist-
band and machine learning for possible application
in pill intake monitoring. Computer Methods and
Programs in Biomedicine, 219:106753, 2022.

Robby Nieuwlaat, Nancy L. Wilczynski, Tamara
Navarro, Nicholas Hobson, Rebecca A. Jeffery,
Arun Keepanasseril, Thomas Agoritsas, Niraj Mis-
try, Alfonso Iorio, Susan M. Jack, Bhairavi Sivara-
malingam, Emma C. Iserman, Reem A. Mustafa,
Dawn Jedraszewski, Chris Cotoi, and R. Brian
Haynes. Interventions for enhancing medication
adherence. The Cochrane database of systematic
reviews, 11:CD000011, 2008. URL https://api.

semanticscholar.org/CorpusID:34782866.

Lars Osterberg and Terrence Blaschke. Adherence to
medication. New England journal of medicine, 353
(5):487–497, 2005.

Abhinav Parate, Meng-Chieh Chiu, Chaniel Chad-
owitz, Deepak Ganesan, and Evangelos Kaloger-
akis. Risq: Recognizing smoking gestures with in-
ertial sensors on a wristband. In Proceedings of
the 12th annual international conference on Mobile
systems, applications, and services, pages 149–161,
2014.

Attila Reiss and Didier Stricker. Introducing a new
benchmarked dataset for activity monitoring. In
2012 16th international symposium on wearable
computers, pages 108–109. IEEE, 2012.

Sheng Shen, Mahanth Gowda, and Romit
Roy Choudhury. Closing the gaps in inertial
motion tracking. In Proceedings of the 24th
Annual International Conference on Mobile
Computing and Networking, pages 429–444, 2018.

Yiru Shen, James Salley, Eric Muth, and Adam
Hoover. Assessing the accuracy of a wrist mo-
tion tracking method for counting bites across de-
mographic and food variables. IEEE journal of
biomedical and health informatics, 21(3):599–606,
2016.

Muhammad Shoaib, Stephan Bosch, Hans Scholten,
Paul JM Havinga, and Ozlem Durmaz Incel. To-
wards detection of bad habits by fusing smart-
phone and smartwatch sensors. In 2015 IEEE in-
ternational conference on pervasive computing and
communication workshops (PerCom Workshops),
pages 591–596. IEEE, 2015.

Matthew A Spinelli, Jessica E Haberer, Peter R
Chai, Jose Castillo-Mancilla, Peter L Anderson,
and Monica Gandhi. Approaches to objectively
measure antiretroviral medication adherence and

578

https://doi.org/10.1145/3264923
https://doi.org/10.1145/3264923
https://api.semanticscholar.org/CorpusID:34782866
https://api.semanticscholar.org/CorpusID:34782866


DoseMate: A Real-world Evaluation of Machine Learning Classification of Pill Taking

drive adherence interventions. Current HIV/AIDS
Reports, 17:301–314, 2020.

Sheikh Badar Ud Din Tahir, Ahmad Jalal, and
Kibum Kim. Wearable inertial sensors for daily
activity analysis based on adam optimization and
the maximum entropy markov model. Entropy, 22
(5):579, 2020.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez,  Lukasz
Kaiser, and Illia Polosukhin. Attention is all you
need. Advances in neural information processing
systems, 30, 2017.
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Appendix A. System pre-deployment

Here we describe the steps needed to deploy an in-
stance of DoseMate. These steps are outlined from
the point of view of a medical clinic or hospital and as-
sumes the backend system has been already installed
by the researchers using appropriate computing, net-
working, and storage resources.

1. Backend account creation: The research co-
ordinator creates study-specific and anonymous
Google accounts for participants. Research co-
ordinator creates a user in the DoseMate back-
end that links an anonymous ID with the Google
account. The DoseMate app developer adds ac-
count information to the Google Play Store al-
lowlist, configured in closed testing.

2. Mobile software configuration: The clini-
cian enrolls patient in backend system using an
anonymous identifier and the Google account.
clinician enters the medication dose schedule
which has flexible configuration according to
time-of-day, day-of-week, and is assigned on a
per-medication basis.

3. Mobile device setup: The research coordina-
tor configures the software using a study-specific
phone and downloads the smart calendar app
from the Google Play store. Next, they pair the
watch with the phone and install the companion
app on the watch that runs a background service
used for motion data collection.

4. Mobile software configuration: The research
coordinator uses Google sign-in to securely con-
nect the app with the back end system, which
synchronizes the current medication schedule.
Finally, they associate NFC stickers with each
medication in the participant’s dose schedule by
tapping the phone against each tag and selecting
an unassigned medication from a list of available
medications. No information is stored in the tag
memory and the tag’s unique identifier is used
to form an association with the medication.

5. Participant enrollment: The research coor-
dinator meets with the participant and gives a
walkthrough of the system components. The
participant completes a survey that includes
demographic information and details regarding
current challenges with medication adherence.

The time series data in Figure 4 can see that there
are some commonalities between the two intakes.
During the pill intake, we observed analogous troughs
in the gyroscope data and comparable increases in
gyroscopic measurements along the z-axis. Likewise,
the drinking action exhibited similar patterns. Dur-
ing the drinking period, the data collected from the
accelerometer y-axis, we identified two parabolic for-
mations and the gyroscope data for the z-axis dis-
played a consistently descending trajectory.

Appendix B. Deep learning model
details and
hyper-parameter setup.

Here we provide more details regarding the deep
learning model architecture we used and the vari-
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ous hyper-parameter settings we chose. As shown
in Figure 6, the input time-series are first processed
by the transformer module, which is feed-forward
architecture based on the multi-headed self atten-
tion mechanism with residual connections across lay-
ers. The time-series are then processed in parallel
by an LSTM module and a 1-dimensional convolu-
tion module. The outputs of the LSTM and con-
volutional module are then concatenated forming a
hidden vector representation that is then passed to a
fully-connected layer for final classification.

The hyper-parameters chosen for the deep learning
model are presented in Table 5. The architectural di-
mensions were chosen based on common setups found
in practice to limit the model size in order to avoid
overfitting. Other hyper-parameters such the batch
size, learning rate and dropout ratio were tuned on
the development set.

Table 5: Deep learning model hyper-parameters

LSTM-FCN Parameters Value

LSTM Hidden size 128
Number of LSTM layers 2
1D CNN channels 64,32,16
1D CNN kernel sizes 8, 5, 3
Dropout 0.2
Batch size 16
Learning rate schedule polynomial decay
Peak learning rate 3e-4
Number of training epochs 20

Transformer Parameters Value

Hidden size 128
Maximum sequence length 512
Number of layers 12
Number of attention heads 8
Feed-forward dimension 2048
Attention dropout 0.1
Activation function GELU
Batch size 16
Learning rate schedule polynomial decay
Peak learning rate 3e-4
Pre-training epochs 200
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Figure 8: Larger view of the deep learning-based architecture for IMU time-series classification. x is the
multi-variate time-series input data and y is the classification label. The ⊕ symbol between modules indicates
concatenation.

Table 6: Cross validation results. For the feature-based setup, we report results from XGBoost model and
top ranked 50 features on the validation set. The deep learning model uses the architecture in Figure 6
where the input is passed to the pre-trained Transformer without input concatenation and no fine-tuning
of the Transformer. (SP: Specificity, BA: Balanced accuracy, AUC: Area under the ROC curve). The
DoseMate dataset only includes data from participants of the study. Instances of open datasets are used as
negative examples (no intakes) in addition to the DoseMate dataset.

XGBoost Deep learning
Dataset setup SP BA AUC SP BA AUC
DoseMate only .67 .82 .90 .88 .90 .94
DoseMate+ Cafeteria Shen et al. (2016) .97 .97 .99 .99 .99 1.00
DoseMate+ Daily sports (left arm) Altun et al. (2010) .92 .94 .98 .96 .97 .99
DoseMate+ Daily sports (right arm) Altun et al. (2010) .94 .95 .98 .97 .98 .99
DoseMate+ FIC Kyritsis et al. (2019) .85 .91 .95 .96 .97 .99
DoseMate+ Handy Açıcı et al. (2018) .83 .89 .94 .94 .95 .98
DoseMate+ MHealth Banos et al. (2014) .87 .93 .95 .97 .98 .99
DoseMate+ Pamap2 Reiss and Stricker (2012) .88 .94 .94 .96 .97 .99
DoseMate+ IM-WSHA Tahir et al. (2020) .78 .87 .93 .93 .94 .97
Average .86 .91 .95 .95 .96 .98
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